Genetically Modified Insects (S&T Committee Report) Debate

Full Debate: Read Full Debate

Lord Cameron of Dillington

Main Page: Lord Cameron of Dillington (Crossbench - Life peer)

Genetically Modified Insects (S&T Committee Report)

Lord Cameron of Dillington Excerpts
Tuesday 7th June 2016

(7 years, 11 months ago)

Lords Chamber
Read Full debate Read Hansard Text
Lord Cameron of Dillington Portrait Lord Cameron of Dillington (CB)
- Hansard - -

My Lords, I also served on the committee that produced this report and thank the noble Earl, Lord Selborne, for his wise chairmanship and the administrative team for their excellent support. My very short intervention will merely echo the main message of the report: namely, that in the fight against disease we need more tools in our toolbox, not fewer. Of course, by this stage in a debate it is inevitable that there are repetitions of points that have been made. I hope that noble Lords will support my view that repetition is a good way to strengthen an argument.

GM insects may or may not be the most effective, or even the most cost-effective, method of controlling disease, but we should not put barriers in the way of their development. For instance, as the noble Lord, Lord Krebs, said, during our investigation we heard from Professor Whitty, among others, that using population suppression or population replacement as a weapon against malaria might at the moment not be cost-effective. As others have said, we appear to be gradually winning the battle against Anopheles stephensi and gambiae, which could be described as night-time mosquitoes, using bed nets and wall sprays. As others have said, the targeted distribution of bed nets has so improved that in the last 15 years deaths from malaria have been reduced by some 60% and the incidence of new cases of malaria by 37%. Of course, the more you reduce malaria, the less chance there is of a mosquito picking it up and passing it on. So the economic case for spending a lot of money on GM mosquitoes to combat malaria is, at the moment, not very good—but of course that could change.

However, with dengue fever, which, as others have said, is spread by the Aedes mosquito, aegypti and others, which could be described as daytime mosquitoes, the situation is very different. You can suppress their numbers by avoiding stagnant water—but that is pretty difficult in tropical countries, which is one of the reasons why dengue fever has increased 30-fold in the last 50 years, with more than 40% of the world’s population now at risk. You can use intermittent fogs of chemical sprays during an epidemic, but that could have serious wider environmental consequences, so having a well-targeted tool such as a GM mosquito for population replacement could be a more risk-free alternative—if, of course, its effects are properly tested.

For me, I think that population replacement—that is, introducing mosquitoes with a gene drive that makes them no longer act as a vector—rather than population suppression, which has the possible risk of creating an environmental vacuum, looks like being the safest alternative. But, if properly tested for full effects, either might work. Equally in agriculture, it has always seemed to me that dealing with a disease at source, if that were possible, would always be better than the widespread spraying of chemicals into the environment.

As an aside from insects, I have always thought that using GM seeds to combat pests and diseases would be so much better for the environment than using sprays, both organic and non-organic. Sprays always have a wider effect than the target crop itself. The fact that the seed, or in this case the insect, might have been arrived at through genetic modification is frankly neither here nor there. It is the product and its place and effect in the environment that is the crucial factor, not how it was arrived at. As someone said in one of our evidence sessions, to think otherwise is rather like judging a book by whether it has been produced on a word processor or a typewriter rather than judging the quality and characteristics of the book itself.

So in the EU there could be a place for GM insects in the control of, for instance, Schmallenberg virus, bluetongue disease, the olive fly or the diamondback moth et cetera. We might also be able to use GM insects in our fight against invasive species, as the noble Viscount, Lord Ridley, said—although there we probably would be talking about population suppression. Of course, it may not work. This whole science is still in its infancy and may not produce a totally effective solution. But in terms of agriculture there is now a very thin pipeline of replacement chemicals to ensure effective crop protection and production, mostly because of the EU assessments being based on hazard rather than risk—but I will not go there today. So this new science must be given a chance.

As I said at the beginning, we need more tools in our toolbox, not fewer, and that includes the possibility of having to use this sort of technology in the UK in the future to limit the effects of some life-threatening human disease, possibly dengue fever, malaria or the Zika virus now, as they move slowly northwards. In other words, we may need this tool at some point in the future as a matter of some urgency, and unless we have tested the problems of release in advance, it might take too long to get an effective solution under way. I should at this point stress that no one is asking that any corners are cut. While we have the time, we must take all the precautionary measures possible.

It would take years, maybe even a decade or so, of trialling and testing under controlled conditions before we would be in a position to even think of using such a solution to deal with diseases of either humans or animals in the UK. We truly need to know the total effect of such actions on the wider environment. Every variation or modification must be tested to the full—but the key phrase is, “while we have time”. When we really need these advances in science, we must be ready. It is by not being prepared that the temptation to cut corners could become more alluring. That is why the UK should be helping to run at least one controlled pilot scheme, either here or in partnership with a developing country.

In their response to our report, the Government thought that our proposal for a GM insect trial was an “interesting idea” for the future. They thought that there were no GM insects ready to be trialled in the UK, but that overlooks our overseas territories. They thought that such a trial would be unlikely to make much of an impact. Depending on how you interpret the word “impact”, in many ways that might be a good thing when you consider the absurd reaction to every other GM product. HMG also believe that the current regulatory framework is already able to cater for gene-drive mechanisms. All I can say is, “prove it”. If there is no appropriate product in the pipeline, the Government should clearly announce today their intended, immediate support for one when it comes along. As I said, we need more tools in our toolbox and not fewer.