Gene Editing Debate

Full Debate: Read Full Debate
Thursday 30th January 2020

(4 years, 2 months ago)

Lords Chamber
Read Full debate Read Hansard Text
Viscount Ridley Portrait Viscount Ridley (Con)
- Hansard - -

My Lords, it is an honour to follow such a clear and persuasive speech by the noble and right reverend Lord, Lord Harries, with whom I fully agree. Like others, I congratulate the noble Baroness, Lady Bakewell, on securing this debate. Its title does not include the word “human”, so I will focus my remarks on genome editing in agriculture and the environment. I had a hunch that greater medical and ethical minds than mine would have addressed the human aspect by the time I stood up.

In contrast to the human case, it is absolutely vital that the UK Government signal their encouragement of genome editing in agriculture this afternoon. There is no clearer case of a technology in which we could and should take the lead, but in which we are and will be held back if we do not break free from the EU approach. That would not be a race to the bottom but the very opposite: a race to the top. For example, if we allowed the genome-edited blight-resistant potatoes developed at the Sainsbury Laboratory to be grown here in the UK, we would be able to greatly reduce the spraying of fungicides on potato fields, which happens up to 15 times a year, harming biodiversity and causing lots of emissions from tractors. That would be an improvement, not a regression, in environmental terms.

Although we have heard the Prime Minister champion this technology, we have not heard nearly enough from other Ministers so far. The technology has enormous potential to do good and less possibility of doing harm than the existing technologies it would replace.

The private sector is not in a position to champion genome editing in agriculture, because the private sector effectively does not exist in this space. Twenty years ago there were 480 full-time equivalent PhD-level jobs in agricultural biotechnology in the private sector in this country. Today there are 10. That is what has happened to that whole sector in this country. Until politicians signal a sea change, the private sector will shun the UK’s wonderful labs and the breakthroughs will be applied overseas, if at all.

In that context, let us not forget that—as others have suggested—Britain has a truly extraordinary record in biology, far above any other country’s and far more dramatic than in physics and chemistry. Here is a short list of the things that were discovered, invented or developed first on these damp little islands with 1% of the world population: the circulation of the blood, evolution by natural selection, antibiotics, the structure of DNA, DNA sequencing, the first test-tube baby, DNA fingerprinting, the first cloned mammal. I could go on.

Genome editing is an alarming exception. The early work is the result of work done in Spain, France, Japan, Holland, Finland and America, with not a Brit in sight. We are playing catch-up, but are well placed to get back in the lead if we only have the right encouragement. Here is another shocking statistic: last year three French scientists reviewed the patenting of CRISPR products in agriculture and found that, whereas America had taken out 872 patent families and China 858, the EU had taken out only 194. The gap is growing.

The July 2018 ruling by the European Court of Justice, in defiance of clear advice from its Advocate-General, was a disaster. It meant that genome-edited plants and animals are subject to the draconian, interminable and reputation-poisoning regulations that have killed genetic modification in Europe, despite its manifest environmental benefits. It also made no sense. The objection to GMOs was always that they include foreign genetic material. That is not true of genome editing. In many cases, it is impossible to distinguish a genome-edited variety from a conventionally bred variety with the same trait. Stefan Jansson from Umeå University in Sweden put it like this:

“Common sense and scientific logic says that it is impossible to have two identical plants where growth of one is, in reality, forbidden while the other can be grown with no restrictions; how would a court be able to decide if the cultivation was a crime or not?”


America sensibly went the other way, regulating the technology not by the method used but by the trait expressed. If you can make a potato resistant to blight, what matters is: is the potato safe, whether it was made by conventional breeding, gamma-ray mutagenesis or genome editing? In the EU, if you made this potato by gamma-ray mutagenesis, scrambling its DNA at random in a nuclear reactor, the regulations would say: “No problem. Go ahead and plant it; no regulations.” If you made it by the far more precise method of genome editing, in which you know exactly what you have done and have confined your activities to one tiny bit of DNA, you are plunged into a Kafkaesque maze of regulatory indecision and expense from which you will likely never emerge.

We need to hear from the Government that they will switch to regulating biotechnology by trait, not by method. The Science and Technology Committee, on which I sit, recommended this a few years back. It is a matter not just of environmental benefits but of animal welfare. In 2017, scientists at the Roslin Institute near Edinburgh announced that they had genome-edited pigs to protect them against a virus called porcine reproductive and respiratory syndrome, PRRS. They used CRISPR to cut out a short section from the gene that made the protein which gave the virus access to cell, thus denying the virus entry. They did this without altering the function of the protein, so the animal grew up to be normal in every way except that it was immune to the disease. This means less vaccination, medication and suffering. What is not to like? But commercialising that animal in the UK is currently all but impossible.

Looking further ahead, the same scientists at the Roslin are now looking into how to control grey squirrels not by killing them, as we do now, but by using genome editing to spread infertility infectiously through the population, so that the population slowly declines while squirrels live happily into old age. This technique, called gene drive, will transform the practice of conservation all around the world, especially the control of invasive alien species—the single greatest cause of extinction among birds and mammals today. For those who worry that gene drive might run riot, it will be designed to last for a certain number of generations, not forever.

Looking even further into the future, genome editing will one day allow the de-extinction of the great auk and the passenger pigeon. To achieve this, we need to take four steps: to sequence the DNA of an extinct species, which we have done in the case of the great auk; to edit the genome of a closely related species in the lab, which is not yet possible but will not be far off with genome editing techniques; to turn a cell into an adult animal, which is difficult, but possible through primordial germ cell transfer, again pioneered at the Roslin Institute; and to train the adults for living in the wild, which is hard but possible.

If we do gene editing in Britain we will cure some cancers, improve animal welfare, encourage biodiversity and bring back the red squirrel. If we do not, then China and America, Japan and Argentina will still push ahead with this technology and will follow their own priorities, leaving us as supplicants to get the technology second-hand.